Italy reimposes widespread lockdown as transmission rate rises again

Rome’s decision on 15 March to suspend use of the AstraZeneca vaccine, along with France, Germany, and Spain, has exacerbated the already difficult situation.

More here

Why 6.5% of coronavirus vaccine doses in India are going to waste

The govt did not say how many doses had been wasted, but the percentage figure suggests it could be more than 2 mn.

More here

Coronavirus updates | March 17, 2021

Maharashtra alone accounts for 61.8% of the daily new cases with 17,864 cases. It is followed by Kerala with 1,970 while Punjab reported 1,463 new cases.

More here

The first 12 months of COVID-19: a timeline of immunological insights

Since the initial reports of a cluster of pneumonia cases of unidentified origin in Wuhan, China, in December 2019, the novel coronavirus that causes this disease — severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) — has spread throughout the world, igniting the twenty-first century’s deadliest pandemic.

Over the past 12 months, a dizzying array of information has emerged from numerous laboratories, covering everything from the putative origin of SARS-CoV-2 to the development of numerous candidate vaccines.

Many immunologists quickly pivoted from their existing research to focus on coronavirus disease 2019 (COVID-19) and, owing to this unprecedented convergence of efforts on one viral infection, a remarkable body of work has been produced and disseminated, through both preprint servers and peer-reviewed journals.

Here, we take readers through the timeline of key discoveries during the first year of the pandemic, which showcases the extraordinary leaps in our understanding of the immune response to SARS-CoV-2 and highlights gaps in our knowledge as well as areas for future investigations. Article here.
The “Green Pass” Proposal in Israel

Vaccine hesitancy, identified in 2019 by the World Health Organization as one of the major threats to global health, has become a potentially more important issue during the COVID-19 pandemic. After a year of worldwide morbidity, mortality, social distancing, and lockdowns, and despite the development of several clinically tested and efficacious vaccines, not everyone is willing to be vaccinated. In light of the devastating health, economic, and social effects of the pandemic, the availability of effective vaccines represents an important component of the hope to return society to normalcy.

However, some have expressed concerns regarding the fast-tracked new technology involved with the development of COVID-19 vaccines, and these, along with the well-established concerns of vaccine opponents, have contributed to substantial hesitance regarding the willingness to seek and receive these vaccines. More here.

Clofazimine broadly inhibits coronaviruses including SARS-CoV-2

The FDA-approved molecule was found to inhibit viral spike-mediated cell fusion and viral helicase activity. In a hamster model of SARS-CoV-2 pathogenesis, prophylactic or therapeutic administration of clofazimine significantly reduced viral load in the lung and faecal viral shedding, and also mitigated inflammation associated with viral infection. Combinatorial application of clofazimine and remdesivir exhibited antiviral synergy in vitro and in vivo, and restricted upper respiratory tract viral shedding. Article here.

Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant

Between June 24 and November 9, 2020, we enrolled 2026 HIV-negative adults (median age, 30 years); 1010 and 1011 participants received at least one dose of placebo or vaccine, respectively. Both the pseudovirus and the live-virus neutralization assays showed greater resistance to the B.1.351 variant in serum samples obtained from vaccine recipients than in samples from placebo recipients. In the primary end-point analysis, mild-to-moderate Covid-19 developed in 23 of 717 placebo recipients (3.2%) and in 19 of 750 vaccine recipients (2.5%), for an efficacy of 21.9% (95% confidence interval [CI], -49.9 to 59.8). Article here.